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Green’s Function Technique for Solving
Anisotropic FElectrostatic Field Problems

MASANORI KOBAYASHI

Abstract—The validity of the reciprocity relation satisfied by the
Green’s function is discussed for a multidielectric region with inhomoge-
neous anisotropic media. A theoretical proof on the use of the Green’s
function technique for solving boundary-value problems is discussed for
general cases.

I. INTRODUCTION

HE PARAMETERS of a microstrip line based on a

TEM approximation can be calculated from the line
capacitance between the conductors. The line capacitance
can be obtained by using the Green’s function satisfying
the boundary conditions [1}-[4]. However, in most previ-
ous works, isotropic substrate materials are treated. Re-
cently the effect of anisotropy of the sapphire on the
quasi-static characteristics of microstrip lines have been
investigated by the finite difference method [5].

The impedance and velocity matching, which are prin-
cipal limiting factors of the electrooptic light modulator
bandwidth, have been studied [6]-[8]. The modulator is
made of an anisotropic crystal. The parameters can be
derived from the line capacitance. The latter can be
calculated by using the Green’s function. The line capaci-
tance of a thin-film electrooptic light modulator with
parallel-strip electrodes was calculated by the variational
technique using the Green’s function in the Fourier-trans-
formed domain [8]. In these problems involving aniso-
tropic materials, various properties of field functions are
needed.

This paper reports that the reciprocity relation satisfied
by the Green’s function is valid for a multidielectric
region with inhomogeneous anisotropic media by an ex-
tension of the reciprocity relation for isotropic media [9]
and shows the theoretical proof on what region the
Green’s function is determined and how to apply the
Green’s function in solving boundary-value problems.
Such theoretical proof for a multidielectric region with
anisotropic media has not appeared in literature. Numeri-
cal analyses of the microstrip and the modulator by using
this Green’s function technique are reported in another
paper [10].

II. REcCIPROCITY RELATION FOR GREEN’S FUNCTION

In the three-dimensional space, consider the region R’
containing only the dielectric medium whose permittivity
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Fig. 1. A p-dielectric region R with inhomogeneous anisotropic media.

€(r) is a tensor of position r and continuous with continu-
ous first-order partial derivatives. Let u(r) and w(r) be
two scalar functions of position in the region R’. Applying
the divergence theorem to the two vector functions, €(7)-
{u(nNVw(r)} and €(r)-{w(r)Vu(r)}, and subtracting the
latter result from the former, we obtain Green’s theorem

f}{,f [u()V-{e(r) Vw(r)} —w(r)V-{e(r)-Vu(r)}] dv
+ [ [ {0 =& ()} Tw(r) - Tu(r) do
= [[[EO- (V= wTu®) Jnda (1)

where n denotes the unit outward normal vector to the
surface S’ enclosing the region R’ and T denotes the
transpose.

Next, consider a p-dielectric region R as shown in Fig. 1
in the three-dimensional space: there is no need to con-
sider S, and n,,,, shown in Fig. 1. They will be used in
the next section. The region R enclosed by the surface S is
composed of the regions R; (i=1,2,- - ,p). Let the region
R, be filled with the inhomogeneous and anisotropic di-
electric medium of permittivity €(r), which is a tensor
with continuous first-order partial derivatives. Also
assume that R, is bounded by the surface S, which is
piecewise smooth. The source point (xy,y,2,) Will be
designated by r,, the observation point (x,y,z) by r, and
the three-dimensional delta function by 8 (¥ — ry).

The Green’s function G (r;r,) is defined as a solution of
the three-dimensional inhomogeneous partial differential
equation

VA{e(r)(VG)}==8(r—ry) )

subject to the homogeneous boundary condition
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a(r){e(r)(VG)}:n+B(r)G=0, onS (3)
and the boundary conditions at the interfaces S,NS;
(ij=12,---,p, where i)

Gls,nq,res=G|@mg,reg 4)
{6()-(VG) ) nlsns res=—{6(N (VO }nlsns. es
)

where

ro =r,G=G(r;r) when ry€R,; (i=1,2,---
e(r) =¢(r)whenreRr, (i=12,---,p),

n  unit outward normal vector to S,

n,  unit outward normal vector to S, (i=1,2,---,p).

\D)

The condition (3) can be classified into the following three
cases: the Dirichlet problem

a(r)=0, B(r)#0, ons§, (6)
the Neumann-like problem

a(r)#£0, B(r)=0, onsS, @)
and the mixed problem

a(r)=0, B(r)#0, on . )

Replacing u(r) by G(r;r), and w(r) by G(r;r,) in
Green’s theorem (1) and using the method similar to that

described in [9], we can derive the reciprocity relation
G(rt;rk)=G(rk;rt) (9)
if
ef(ry=¢€(r). (10)

Therefore, we find that the reciprocity relation (9)
satisfied by the Green’s function for the inhomogeneous
partial differential equation (2) is valid for the boundary-
value problems (6)~(8).

III. GREEN’S FUNCTION TECHNIQUE FOR

BOUNDARY-VALUE PROBLEMS

Here we derive the theoretical proof on what region the
Green’s function is determined and how to apply the
Green’s function in solving boundary-value problems.
Consider the region Rg,p given by removing the subre-
gion R,,,(= R, U R,) with the surface S, (S,,=S,US,,—
S,nS,—S,nS,) from the region R of Fig. 1 and
bounded by the surface Sgzpp(=S U S,,). In the region
Ry p, we consider the following boundary-value problem
with the homogeneous boundary condition on § and with
the nonhomogeneous boundary condition on S, as a
general example:

V-{E(r)-(V¢)}=0, m Rppp (11)
subject to the homogeneous boundary condition
a(r){e(r)-(V¢)}-n+B(r)¢p=0, onS (12)

and the boundary conditions at the interfaces S,NS;
(i,j=1,2,---,p; where i#j and i,j#h,m)

(13)

¢’s{m S,rES, =¢]S,mS,,reSj
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{Ei(r)'(v¢)}'”ils,m S.res,s {Ej(r) (V(I))}‘nJ,.S}ﬁS,,rES;
(14)

and the nonhomogeneous boundary condition on the
surface S}

EN{e(r) (Vo) } -y + (o= (r), (15)

Now we consider the media which satisfy (10) in Rgyp
and R. We choose the solution of (2) subject to the
boundary conditions (3)~(5) in the region R of Fig. 1 as
the Green’s function for the above boundary-value prob-
lem. We derive the potential ¢(r) at an arbitrary point 7,
in an arbitrary subregion R; in Ry, by using the Green’s
function G = G (r; ). Replacing u(r) by ¢(r), and w(r) by
G; in Green’s theorem (1) for the media satisfying (10), we
obtain the following equation for the region R, (k=
1,2, --,p;where ks h,m):

[f]. [67 (801 (76)) = G- (&) (Vo)) ]
- [ [a0» 676)~&()(GV) [ nda. (16

on S,’.

Summing (16) over all &, substituting (2) and (11) into
those volume integrals, and rearranging surface integrals
by using (3)-(5) and (12)-(14), we obtain

fj; AU )[‘gk(”)'@vc})

—&-(GV¢) |mda. (17)

o(r)=— é

k=1,k#h,m

The right-hand side of (17) can be expressed in terms of a
surface integral on the surface S, . Replacing r, with r,
and r with r,, and using the reciprocity relation (9), we
can express the potential at an arbitrary point r in Ry,
by the surface integral on S, as follows:

8= [ [E00 {60976 (r:r0))

—-E(ro)-{G(r; rO)V0¢(rO)} }'"hmdao (13)

where €(ry)=¢.(r,) when ry€R, (k=12,---,p; where
k#h,m), and V, and dg, designate differentiation and
integration with respect to x,, vy, zo, respectively. It can be
shown by using (2)—(5) that this potential ¢(r) satisfies
(11)-(14).

Therefore, the boundary-value problem with the nonho-
mogeneous boundary condition (15) on the surface S,
can be solved as the surface integral (18) on S, by the
use of the Green’s function for the region given by adding
the subregion which is bounded by S,,, and which can be
divided into any subregions with any media satisfying
(10).

Now, if the nonhomogeneous boundary condition on
Spr, 18
(19)

o=V, on S,}
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(18) becomes the integral of (20). This is because the first
term in integrand vanishes after integration on account of

(D, (), (4), and (5):

#()= [ | o(ro)G (riro)dag (20)

where

0("0)=[€_(r0)'{“V¢("o)}]’”hm (21)

and the unknown charge distribution a(r,) is determined
by (19) and (20).

1V. ConcLusioN

The validity of the reciprocity relation satisfied by the
Green’s function has been discussed. The theoretical
proof on the use of the Green’s function technique has
been discussed for general cases. The reciprocity relation
and the Green’s function technique will be useful for
problems involving the Green’s function of the form dis-
cussed here.
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