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Green’s Function Technique for Solving
Anisotropic Electrostatic Field Problems

MASANORI KOBAYASHI

Abstract—The vafWy of tfse reciprocity relation satisfied by the

Green’s fmretion is discnssed for a mrdtidiektric region with inhomoge-

rreous aoisotropic media. A theoretical proof on the use of the Green’s

function teehrdque for solving boundary-value problems is discussed for

general cases.

I. INTRODUCTION

T HE PARAMETERS of a microstrip line based on a

TEM approximation can be calculated from the line

capacitance between the conductors. The line capacitance

can be obtained by using the Green’s function satisfying

the boundary conditions [ 1]–[4]. However, in most previ-

ous works, isotropic substrate materials are treated. Re-

cently the effect of anisotropy of the sapphire on the

quasi-static characteristics of microstrip lines have been

investigated by the finite difference method [5].

The impedance and velocity matching, which are prin-

cipal limiting factors of the electrooptic light modulator

bandwidth, have been studied [6]–[8]. The modulator is

made of an anisotropic crystal. The parameters can be

derived from the line capacitance. The latter can be

calculated by using the Green’s function. The line capaci-

tance of a thin-film electrooptic light modulator with

parallel-strip electrodes was calculated by the variational

technique using the Green’s function in the Fourier-trans-

formed dpmain [8]. In these problems involving aniso-

tropic materials, various properties of field functions are

needed.

This paper reports that the reciprocity relation satisfied

by the Green’s function is valid for a multidielectric

region with inhomogeneous anisotropic media by an ex-

tension of the reciprocity relation for isotropic media [9]

and shows the theoretical proof on what region the

Green’s function is determined and how to apply the

Green’s function in solving boundary-value problems.

Such theoretical proof for a multidielectric region with

anisotropic media has not appeared in literature. Numeri-
cal analyses of the microstrip and the modulator by using

this Green’s function technique are reported in another

paper [10].

II. RECIPROCITY RELATION FOR GREEN’S FUNCTION

In the three-dimensional space, consider the region R‘

containing only the dielectric medium whose permittivity
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Fig. 1. A p-dielectric region R with inhomogeneous anisotropic media.

E(r) is a tensor of position r and continuous with continu-

ous first-order partial derivatives. Let u(r) and w(r) be

two scalar functions of position in the region R‘. Applying

the divergence theorem to the two vector functions, :(r).

{u(r) Vw(r)} and ;(r). {w(r) Vu(r)}, and subtracting the

latter result from the former, we obtain Green’s theorem

.(.(~[U(’)V”{:(~)ovw(~)}- w(r)V. {=(r)%(r)}] do
R’

+ ~~~ [{ Z(r)–;~(r)}. Vw(r)]%(r)do

= ff;:(’)”{~(’)vw(’) -w(’) v~(’)}1”~ da (1)
s’

where n denotes the unit outward normal vector to the

surface S‘ enclosing the region R‘ and T denotes the

transpose.

Next, consider ap-dielectric region R as shown in Fig. 1
in the three-dimensional space: there is no need to con-

sider SAL and nk~, shown in Fig. 1. They will be used in

the next section. The region R enclosed by the surface S is

composed of the regions Ri (i= 1,2,.0. ,p). Let the region

R, be filled with the inhomogeneous and anisotropic di-

electric medium of permittivity ~(r), which is a tensor
with continuous first-order partial derivatives. Also

assume that R, is bounded by the surface S, which is

piecewise smooth. The source point (Xo,yo, ZO) will be

designated by ro, the observation point (x,y, z) by r, and
the three-dimensional delta function by 8 (r – ro).

The Green’s function G (r; ro) is defined as a solution of

the three-dimensional inhomogeneous partial differential

equation

V.{=(r) .( VG)}=–8(r–ro) (2)

subject to the homogeneous boundary condition
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a(r){ :(r’). (v G)}.n+p(r)G=o, on S (3)

and the boundary conditions at the interfaces S, n Sj

(z’,j=l,2, ””. ,p, where i #j)

‘l S,n$,reS1= Gl~n S,, rG$
(4)

{~(r)(VG)}.n/S,nS ,~s=-{~(r)(VG)}”~Jlsns ~e.sJ, 1 J 1, ,

where

r.

;(r)

n

n,

(5)

=ri, G~G(r; ri) when rO~Ri (i=l,2,. ..,p)

=~i(r) when rGRi (i= 1,2,. . . ,p),
unit outward normal vector to S,

unit outward normal vector to S, (i= 1,2,.0. ,p).

The condition (3) can be classified

cases: the Dirichlet problem

a(r)=O, ~(r)#O,

the Neumann-like problem

a(r)#O, /?(r)=O,

and the mixed problem

a(r)z O, ~(r)#O,

into the following three

on S, (6)

on S, (7)

on S. (8)

Replacing u(r) by G (r; r,), and w(r) by G (r; rJ in

Green’s theorem (1) and using the method similar to that

described in [9], we can derive the reciprocity relation

G(rl; rJ=G(r~; rz) (9)

if

i~(r)=~(r). (lo)

Therefore, we find that the reciprocity relation (9)

satisfied by the Green’s function for the inhomogeneous

partial differential equation (2) is valid for the boundary-

value problems (6)–(8).

III. GREEN’S FUNCTION TECHNIQUE FOR

BOUNDARY-VALUE PROBLEMS

Here we derive the theoretical proof on what region the

Green’s function is determined and how to apply the

Green’s function in solving boundary-value problems.

Consider the region RBVP given by removing the subre-

gion R~~ ( = R~ u RJ with the surface S~~ (Sk~ = S~ u S~ –

Sfi n Sm– Smn Sh) from the region R of Fig. 1 and

bounded by the surface SBVP( = S u Sh~). In the region

RBVP, we consider the following boundary-value problem

with the homogeneous boundary condition on S and with

the nonhomogeneous boundary condition on Sk; as a

general example:

V. {i(r) .(v@)} =0, in R~vP (11)

subject to the homogeneous boundary condition

a(r){ ~(r) -( V@)}. n+~(r)$=O, on S (12)

and the boundary conditions at the interfaces S, n Sj

(i,j=l,2,... ,p; where i #j and i,j+ h, m)

~ls,n$,~esl=~l~,n~,,,~$ (13)
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{:j(r)-(v+)}-nil~ln~,cs = - {~(r)”(v’$)}”n,l~ns,GS
J, , J ,, ,

(14)

and the nonhomogeneous boundary condition on the

surface S~~

$(r){ ~(r)” (vo)}”nfin+ q(r)q= ~(r), on ‘h;. (15)

Now we consider the media which satisfy (10) in RBVP

and R. We choose the solution of (2) subject to the

boundary conditions (3)–(5) in the region R of Fig. 1 as

the Green’s function for the above boundary-value prob-

lem. We derive the potential +(~) at an arbitrary point ~

in an arbitrary subregion Rj in RBVP by using the Green’s

function ~ ~ G (r; ~). Replacing u(r) by +(r), and w(r) by

~. in Green’s theorem (1) for the media satisfying (10), we

obtain the following equation for the region R~ (k=

1,2, ”.. ,p; where k+ h,m):

Summing (16) over all k, substituting (2) and (11) into

those volume integrals, and rearranging surface integrals

by using (3)-(5) and (12)-(14), we obtain

.=,$#hmfLkn(sk”sm)[’’(r)”(+v~)q5(q) = – ,

–~~. (GjV@]v@a. (17)

The right-hand side of (17) can be expressed in terms of a

surface integral on the surface SAL. Replacing ~ with r,

and r with ro, and using the reciprocity relation (9), we

can express the potential at an arbitrary point r in RBvp

by the surface integral on Sk; as follows:

where ;(ro) = ~~(ro) when r. G R~ (k= 1,2, ” “ “ ,p; where

k # h, m), and V. and da. designate differentiation and

integration with respect to Xo, yo, Zo, respectively. It can be

shown by using (2)– (5) that this potential ~(r) satisfies

(11)-(14).

Therefore, the boundary-value problem with the ncmho-

mogeneous boundary condition (15) on the surface Sk;

can be solved as the surface integral (18) on Sh~ by the

use of the Green’s function for the region given by adding

the subregion which is bounded by Shm and which can be

divided into any subregions with any media satisfying

(lo).

Now, if the nonhomogeneous boundary condition on

S~~ is

+= Vo, on Sh: (19)



512 IEEE TRANSACTIONS ON MICROWAVB THEORY AND TECHNIQUES, VOL. Mrr-26, NO.7, JULY1978

(18) becomes the integral of (20). This is because the first

term in integrand vanishes after integration on account of [1]

(l), (2), (4), and (5):

[2]
$(r) = ~~fiAo(rO)G (r; rO)duo (20)

[3]

where

u(ro) = [ i(ro)” { – V+(ro)} ]“nhm (21) ‘4]

and the unknown charge distribution u(rO) is determined [5]

by (19) and (20).

IV. CONCLUSION [6]

The validity of the reciprocity relation satisfied by the

Green’s function has been discussed. The theoretical

proof on the use of the Green’s function technique has
[7]

been discussed for general cases. The reciprocity relation

and the Green’s function technique will be useful for

problems involving the Green’s function of the form dis- [8]

cussed here.

[9]
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